If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-18z+17=0
a = 1; b = -18; c = +17;
Δ = b2-4ac
Δ = -182-4·1·17
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-16}{2*1}=\frac{2}{2} =1 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+16}{2*1}=\frac{34}{2} =17 $
| 3.8p=6 | | 3(2x-4)=8x-6(3x+4) | | m-(-7)=18 | | 4n^2-5n-20=0 | | 50x-71=50 | | 16u-7u=63 | | -150=6n | | 3x+14=81-7x | | 12+0.18x=30+0.14x | | 3.1=7.9-3u | | 3+x/5=3x | | v/29=28/29 | | 3s+4s=56 | | 2x-8=110 | | 3(5x+2)=2x | | x^-6x-20=7 | | 3x+25+2x=190 | | 5x+25=190 | | x^+13x+40=0 | | 4(3t-10)/5=t+20 | | -3+5x=-29 | | 2x+4=3x+-1 | | (x-8)(2x+50=0 | | 7r-3=3r+5 | | 6/5p=1 | | 3x^2-62x-220=0 | | 2921+5x)=62 | | 3x^2-62-220=0 | | 11/5p=1 | | 21=18-b | | 8x^2+384x+810=0 | | -1n+8=0 |